Астрономия
Литература, Лингвистика
Страховое право
Уголовный процесс
Международные экономические и валютно-кредитные отношения
Экскурсии и туризм
Менеджмент (Теория управления и организации)
Компьютеры и периферийные устройства
Философия
Микроэкономика, экономика предприятия, предпринимательство
История отечественного государства и права
Бухгалтерский учет
Искусство
Маркетинг, товароведение, реклама
Радиоэлектроника
Экономическая теория, политэкономия, макроэкономика
История государства и права зарубежных стран
Психология, Общение, Человек
Банковское дело и кредитование
Историческая личность
Теория государства и права
Физкультура и Спорт
Государственное регулирование, Таможня, Налоги
Социология
Программное обеспечение
Биология
Культурология
Педагогика
Геодезия
Программирование, Базы данных
Международное право
Промышленность и Производство
Биржевое дело
Хозяйственное право
Медицина
Гражданское право
Право
Сельское хозяйство
Химия
Транспорт
Уголовное и уголовно-исполнительное право
Охрана природы, Экология, Природопользование
Физика
Музыка
География, Экономическая география
Математика
История
Муниципальное право России
Экономико-математическое моделирование
Ценные бумаги
Технология
Семейное право
Административное право
Искусство, Культура, Литература
Пищевые продукты
Компьютерные сети
Геология
Трудовое право
Иностранные языки
Здоровье
Юридическая психология
Москвоведение
Экономика и Финансы
Римское право
Гражданская оборона
Техника
Криминалистика и криминология
Конституционное (государственное) право зарубежных стран
Охрана правопорядка
Ветеринария
Военное дело
Налоговое право
Политология, Политистория
Экологическое право
История экономических учений
Религия
Компьютеры, Программирование
Прокурорский надзор
Космонавтика
Уголовное право
Физкультура и Спорт, Здоровье
Авиация
Металлургия
Архитектура
Правоохранительные органы
Конституционное (государственное) право России
Математическая кунсткамера (кое-что из истории геометрии)
Математическая кунсткамера (кое-что из истории геометрии)Поэтому когда x пробегает ось абсцисс, то значение функции все время прыгает от 0 к 1 и обратно. Построить график этой функции совершенно невозможно, потому что эта функция во всех точках разрывна. Но и среди непрерывных функций есть функции с неожиданными свойствами. Например, может ли непрерывная функция иметь на конечном отрезке бесконечно много максимумов и минимумов? На первый взгляд это совершенно невозможно. Ведь функция должна успеть опуститься из точки максимума в точку минимума и т. д. Как же ей сделать все это на конечном отрезке? Тем не менее оказалось, что такие странные функции существуют, причем построить их совсем нетрудно. Построим такую функцию на отрезке [ 0,1 ] . Для этого разделим отрезок пополам и построим на левой половине равносторонний треугольник. Теперь разделим оставшуюся правую половину снова на две равные части и на части [1/2, 3/4] построим второй равносторонний треугольник. Выполним описанную операцию бесконечно много раз. У нас получится «горная цепь», состоящая из бесконечного числа вершин, постепенно опускающаяся к точке 1 0 1 Рис. 12 (рис. 12). Примем полученную ломанную за график функции f(x) . Тогда функция будет определена в каждой точке отрезка [0,1] , за исключением крайней правой точки 1. В этой точке положим f(1)=0 . Так как при приближении к точке 1 высоты вершин стремятся к нулю, полученная нами функция непрерывна во всех точках отрезка [0,1]. А число максимумов и минимумов на этом отрезке бесконечно велико! Математику XVIII в., чтобы построить такую странную функцию, понадобилось бы долго комбинировать различные функции, прежде чем он догадался бы, что функция { x cos( /x) , если x 0 F(x)= { 0 , если x=0 имеет бесконечно много максимумов и минимумов на отрезке [0,1]. Но функции с бесконечным числом максимумов и минимумов были лишь началом неприятностей, ожидавших математиков. Джинн только начал выходить из бутылки. “Мокрые точки”. У функции, которую мы построили в предыдущем пункте, есть лишь одна точка, около которой бесконечно много максимумов и минимумов, а именно точка 1. Сейчас мы построим другую функцию, у которой таких точек будет куда больше. Предположим, что на отрезок [0,1] оси абсцисс падает сверху дождь. Для защиты от дождя поступим следующим образом. Разделим отрезок [0,1] на три равные части и возведем над средней частью палатку в форме равностороннего треугольника. Она защитит от дождя все точки средней части (кроме концов этой части, то есть точек 1/3 и 2/3). Теперь каждую из оставшихся двух частей снова разделим на три равные части и защитим средние части палатками той же формы ( но втрое меньшего размера). Рис. 13 У нас получится линия , изображенная на рис. 13. На третьем шаге процесса мы построим еще четыре палатки , потом еще восемь и т. д. Возникает вопрос : все ли точки отрезка защищены получившейся пилообразной линией или остались точки, которые дождь намочит ? Некоторые из таких “ мокрых ” точек указать легко – ими являются концы защищаемых отрезков (то есть такие, ка 1/3, 2/3, 1/9, 2/9, 7/9, 8/9 и т. д.). Все эти точки остаются без защиты при возведении соответствующей палатки, а последующие палатки их тоже не защищают. Легко видеть, что таких концов будет бесконечное, но счетное множество. Колючая линия. На протяжении многих столетий математики имели дело лишь с линиями, почти в каждой точке которых можно было провести касательную. Если и встречались исключения, то только в нескольких точках. В этих точках линия как бы ломалась, и потому их называли точками излома. В течение долгого времени никто из математиков не верил, что может существовать непрерывная линия, целиком состоящая из зубцов, изломов и колючек. Велико было изумление, когда удалось построить такую линию, более того, функцию, график которой был такой колючей изгородью. Первым это сделал Больцано . Но его работа осталась неопубликованной, и впервые такой пример опубликовал Вейерштрасс. Однако пример Вейерштрасса очень трудно изложить – он основан на теории тригонометрических рядов. Пример же Больцано напоминает линии, которые мы строили раньше. Вот этот пример с небольшими изменениями. Разделим отрезок [0,1] на четыре равные части и над двумя средними частями построим равнобедренный треугольник (рис. 16, а). Получившаяся линия является графиком некоторой функции, которую обозначим через y=f 1 (x) . а б 0 1 0 1 в 0 1 Рис. 16 Разделим теперь каждую из четырех частей еще на четыре равные части и в соответствии с этим построим еще четыре равнобедренных прямоугольных треугольника (рис. 16, б). Мы получим график второй функции y=f 2 (x) . Если сложить эти две функции, то график суммы y=f 1 (x) + y=f 2 (x) будет иметь вид, изображенный на рис. 16, в. Видно, что получившаяся линия имеет уже больше изломов и эти изломы гуще расположены. На следующем шаге мы снова разделим каждую часть еще на четыре части, построим 16 равнобедренных прямоугольных треугольников и прибавим соответствующую функцию y=f 3 (x) к функции y=f 1 (x) + y=f 2 (x). Продолжая этот процесс , мы будем получать все более и более изломанные линии . В пределе получится линия , у которой излом в каждой точке и ни в одной точке к ней нельзя провести касательную . Похожий пример линии , нигде не имеющей касательной построил голландский ученый Ван-дерВарден . Он взял равносторонний треугольник, разделил каждую его сторону на три равные части и на средних частях построил новые равносторонние треугольники, смотрящие наружу. У него получилась звезда. Теперь каждую из двенадцати сторон этой звезды он разделил еще на три части и снова на каждой из средних частей построил правильный треугольник. Получилась еще более колючая линия, в каждой точке которой есть излом, колючка. Такого доказательства Борель не смог получить. Иначе подошел к проблеме измерения множеств начинавший в те годы свою научную деятельность Анри Лебег. Уже первые работы Лебега разгневали математиков классического направления. Само название одной из них «О нелинейных развертывающихся поверхностях» казалось им столь же противоестественным, как, например название «О газообразном льде» для физики или «О рыбообразных слонах» для биолога. Самый слабый студент знал, что любая поверхность, которую можно развернуть на плоскость (цилиндр, конус и т. д.), соткана из прямых линий, то есть может быть получена движением прямолинейной образующей. Но все дело было в том, что молодой автор по иному понимал развертывающиеся поверхности, чем геометры-классики. Он считал такими не только поверхности, получаемые аккуратным изгибанием листа бумаги, но и поверхности, которые получатся, если этот лист бумаги скомкать (поясняя свою работу одному из друзей, Лебег сказал: «Представь себе скомканный носовой платок»). Он доказал, что кусок плоскости можно так «скомкать», что после этого на нем не оказалось ни одного прямолинейного отрезка. Разумеется, получившаяся поверхность вся состояла из складок и изломов. Поэтому ее и пропустили геометры, классифицированные развертывающиеся поверхности: они занимались лишь гладким случаем. От изучения произвольных развертывающихся поверхностей Лебег перешел к общему вопросу, как определить площадь поверхности, если эта поверхность не является гладкой, если к ней нигде нельзя провести касательную плоскость. Для скомканной развертывающейся поверхности задача решается просто: надо расправить ее и подсчитать площадь получившегося куска плоскости. Но этот ответ нельзя было получить по формулам, которые давала классическая математика: они годились лишь для гладких поверхностей. Не удалась бы и попытка измерять площади поверхностей, вписывая в них многогранники и переходя к пределу при уменьшении размеров всех граней. Немецкий математик Г. Шварц показал, что таким путем нельзя найти площадь самого обычного цилиндра – вписанный в него многогранник может оказаться настолько складчатым, что площадь его поверхности куда больше площади цилиндра. Лебегу удалось придумать определение площади поверхности, которое не требовало проведения касательных плоскостей, но в то же время обходило все трудности, связанные с «гармошкой Шварца». Решая эту частную задачу, Лебег пришел к общим идеям о том, что такое мера множества, как измерять длины, площади, и объемы самых причудливых фигур. Взяв от Бореля идею суммирования рядов, он видоизменил определение, предложенное Жорданом , разрешив использовать кроме многоугольников и фигуры, получаемые из них с помощью объединения счетных совокупностей. Именно, назовем фигуру -покрываемой по Лебегу, если существует счетная система многоугольников, объединение которых покрывает эту фигуру, причем сумма ряда, составленного из их площадей меньше, чем . Далее, назовем множество X измеримым по Лебегу, если для любого >0 его можно представить в виде многоугольника А , к которому присоединено одно -покрываемое множество и от которого отброшено другое -покрываемое множество. Если меру многоугольника А обозначить через |А|, то ясно, что мера множества X должна быть заключена между числами| А | - и | А |+ . Оказалось, что для измеримых по Лебегу множеств всегда существует одно и только одно число, обладающее этим свойством, какое бы >0 мы ни выбрали и какой приближающий многоугольник А ни взяли. Это-то число и называют мерой Лебега множества Х. После создания понятия меры Лебега оказалось, что для нее нет никаких осложнений, причем по Лебегу можно измерить все встретившиеся до того в науке множества. Позднее были построены примеры неизмеримых множеств, но они используют так называемую аксиому выбора, о которой будет идти речь ниже. Построенные с ее помощью примеры не являются конструктивными. Поэтому можно сказать, что Лебег решил проблему измерения всех множеств, которые могут встретиться в практической работе математиков. С помощью введенного им понятия меры Лебег сумел найти интегралы всех разрывных функций, которые можно было построить известными в то время методами (интеграл Лебега). Триумф идей Лебега привел к тому, что даже один из вождей математиков – классиков Гастон Дарбу изменил свое мнение и, выступая в 1908г. на Математическом конгрессе в Риме, говорил о пламенном и пытливом духе математики ХХ в., о науке, ведущей свои изыскания в абсолютно новой области с неизведанными перспективами. Он подчеркнул, что наука ХХ в. не боится атаковать основы построений, которые столь долго казались непоколебимыми. Позднее идеи, приведшие к созданию меры и интеграла Лебега, позволили А. Н. Колмогорову построить аксиоматику теории вероятностей, а Норберту Винеру – определить понятия меры и интеграла для пространств, состоящих из функций. Работу надо не рецензировать, а печатать! Урысон доказал много интереснейших теорем, связанных с введенным им понятием размерности. Но одну самую главную теорему ему никак не удавалось доказать: не получалось доказательство того, что самый обычный куб имеет размерность 3. После длительных усилий он нашел замечательный выход из положения, придумав новое определение размерности. Мы не будем детально излагать это определение, а поясним его на простейших фигурах. Если взять отрезок или окружность, то их можно разбить на сколь угодно малые части так, что каждая точка принадлежит не более чем двум кусочкам (рис. 33). При этом надо брать кусочки вместе с их границами (то есть конечными точками). Квадрат уже так разбить нельзя. На первый взгляд кажется, что при разбиении квадрата на куски всегда будут точки, принадлежащие четырем частям (рис. 34, а). Но если уложить части так, как кирпичи на стройке, то удается добиться чтобы каждая точка принадлежала не более чем трем различным частям (рис.34, б). Точно так же у куба есть разбиение на маленькие параллелепипеды при котором каждая точка принадлежит не более чем четырем параллелепипедам. Именно это свойство и принял Урысон за новое определение размерности. |
оценка станка в Смоленске
оценка машин для наследства в Курске