Рефераты, курсовые, контрольные для студента!

 

Астрономия

Литература, Лингвистика

Страховое право

Уголовный процесс

Международные экономические и валютно-кредитные отношения

Экскурсии и туризм

Менеджмент (Теория управления и организации)

Компьютеры и периферийные устройства

Философия

Микроэкономика, экономика предприятия, предпринимательство

История отечественного государства и права

Бухгалтерский учет

Искусство

Маркетинг, товароведение, реклама

Радиоэлектроника

Экономическая теория, политэкономия, макроэкономика

История государства и права зарубежных стран

Психология, Общение, Человек

Банковское дело и кредитование

Историческая личность

Теория государства и права

Физкультура и Спорт

Государственное регулирование, Таможня, Налоги

Социология

Программное обеспечение

Биология

Культурология

Педагогика

Геодезия

Программирование, Базы данных

Международное право

Промышленность и Производство

Биржевое дело

Хозяйственное право

Медицина

Гражданское право

Право

Сельское хозяйство

Химия

Транспорт

Уголовное и уголовно-исполнительное право

Охрана природы, Экология, Природопользование

Физика

Музыка

География, Экономическая география

Математика

История

Муниципальное право России

Экономико-математическое моделирование

Ценные бумаги

Технология

Семейное право

Административное право

Искусство, Культура, Литература

Пищевые продукты

Компьютерные сети

Геология

Трудовое право

Иностранные языки

Здоровье

Юридическая психология

Москвоведение

Экономика и Финансы

Римское право

Гражданская оборона

Техника

Криминалистика и криминология

Конституционное (государственное) право зарубежных стран

Охрана правопорядка

Ветеринария

Военное дело

Налоговое право

Политология, Политистория

Экологическое право

История экономических учений

Религия

Компьютеры, Программирование

Прокурорский надзор

Космонавтика

Уголовное право

Физкультура и Спорт, Здоровье

Авиация

Металлургия

Архитектура

Правоохранительные органы

Конституционное (государственное) право России


Шифрование по методу UUE

Шифрование по методу UUE

Объектом исследования в данной курсовой взят метод шифрования данных по алгоритму UUE . Данный метод используется в большинстве распространенных в настоящее время операционных систем на основе ядра UNIX ( Solaris , FreeBSD , RedHat и др). Целью проекта ставится рассмотрение и изучение алгоритма шифрования данных по методу UUE , анализ его эффективности. Далее в курсовой будут рассмотрена модель шифрования данных по алгоритму UUE . Любая информационная система должна обеспечивать выполнение следующих основных функций: прием, шифрование, дешифрование и выдача информации.

Шифровальные алгоритмы, как например, шифровальный алгоритм IDEA, который использован в PGP, применяют единственную сложную функцию к открытому тексту для того, чтобы производить шифрование текста. С тех пор как алгоритм становится известным это означает, что даже если поток данных в алгоритме неизвестный, операции приложенные к этому потоку данных известны. Любой такой шифровальный алгоритм теоретически может быть взломан.

Например, мы можем быть уверены, что есть много людей с дорогостоящим оборудованием, пытающихся, взломать шифр IDEA прямо сейчас, фактически это возможно уже произошло. Если обычно используемый шифровальный алгоритм уже перехвачен некоторым агентством, мы можем быть уверены, в том что это агентство продаст его другим организациям, что может повлечь за собой крах и большие потери для многих организаций. ОПИСАНИЕ МЕТОДА ШИФРОВАНИЯ UUE Метод шифрования UUE Описание алгоритма Алгоритм UUE основан на идее Фила Карна. Берётся открытый текст 2N байтов и разделяется на две половины T1 и T2, каждый из N байтов. Также ключ шифрования делиться на две половины K1 и K2. Теперь находится функцию хэша пути S и это используется, чтобы смешивать K1 и T1 для того, чтобы получить блок из N байтов, затем производится второй этап шифрования открытого текста T 2 при помощи алгоритма шифрования XOR; в результате получаем блок C2 состоящий из N байтов - это вторая половина зашифрованного текста: S( K1, T1 ) xor T2 -> C2 Аналогичным способом шифруем другую половину текста, чтобы получить C1 - это первая половина зашифрованного текста: S( K2, C2 ) xor T1 -> C1 Полный зашифрованный текст - сочетание блоков C1 и C2. Для того, чтобы дешифровать зашифрованный текст, необходимо повторить операцию в обратном порядке: S( K2, C2 ) xor C1 -> T1 S( K1, T1 ) xor C2 -> T2 Преимущество данной идеи в том, что безопасность основана в качестве скремблера S. Если Вы можете создать хороший скремблер, тогда Вы можете создать хороший шифровальный алгоритм.

Сердцем алгоритма UUE является параметрический скремблер (GSSCRAMBLE). Скремблер состоит из 7 простых скремблеров (SCRAMBLE0.. SCRAMBLE6). Также используются 32 функции хэша (HASH0.. HASH31). Алгоритм UUE основан на вышеописанном методе, но он отличается от него. - Первое отличие – производится деление ключа на четыре равных части: K1s, K1t, K2s, K2t. Компонент K1t используется как первая половина ключа шифрования, компонент K1s используется, чтобы выбирать из большого числа скремблеров - один, чтобы использовать его в дальнейшем для кодировки первой половины открытого текста T1: S ( K1t, T1 ) xor T2 -> C2 K1s Аналогичном способом использованы K2t и K2s, чтобы кодировать вторую часть зашифрованного текста, чтобы получить первую половину зашифрованного текста: S ( K2t, C2 ) xor T1 -> C1 K2s Для того, чтобы дешифровать зашифрованный текст (C1,C2)необходимо повторить эти же операции в обратном порядке: S ( K2t, C2 ) xor C1 -> T1 K2s S ( K1t, T1 ) xor C2 -> T2 K1s Как Вы можете видеть, K1t и K2t использованы, чтобы модифицировать данные, которые нужно смешиваться, и подключи K1s и K2s использованы, чтобы выбирать скремблер, который определяет как данные будут смешаны.

Поскольку UUE использует ключ в 256 байтов, который делится на четыре равные части, каждая длиной в 64 байт (512 битов). Второе отличие предназначено для устранения слабости в алгоритме Фила Карна. Это можно проиллюстрировать следующим образом: предположим, что мы знаем открытый текст (A,B) и мы знаем, что это производит зашифрованный текст (X,Y), и мы также знаем, что открытый текст (A,C) - в котором мы знаем первую половину сообщения, но не знаем вторую половину - производит зашифрованный текст (W,Z). Затем мы можем вычислить неизвестный открытый текст C следующим образом: S( K1, A ) xor B -> Y; следовательно S( K1, A ) = B xor Y S( K1, A ) xor C -> W; следовательно C = S( K1, A) xor W Объединение эти два результата дает мне величину C в форме: C = ( B xor Y ) xor W UUE свободен от этой слабости Чтобы закодировать сообщение: S( K1, T1 xor T2 ) xor T2 -> C2 S( K2 , C2 ) xor ( T1 xor T2 ) -> C1 Чтобы декодировать сообщение S( K2, C2 ) xor C1 -> (T1 xor T2 ) S( K1, T1 xor T2 ) xor C2 -> T2 ( T1 xor T2 ) xor T2 -> T1 Третье отличие – предназначено для защиты против словарной атаки, когда нападающий пытается определять ключ шифрования тестируя величины в словаре потенциальных ключей.

Словарная атака основана на том, что люди не любят делать большие и сложные ключи.

Независимо от того, насколько хорош алгоритм шифрования, если нападающий подбирает несколько миллион вариаций и таким образом может обнаружить ключ шифрования пользователя тогда безопасность целой организации может попасть в опасность. В алгоритме UUE имеется защита от такого рода взлома.

Алгоритм использует отмычку для генерации ключа шифрования.

Используется следующая процедура: перед кодированием или декодированием текста, сначала UUE использует XOR отмычку с реальной произвольной последовательностью символов, которая - включается в код UUE , для того, чтобы стирать любые 'статистические характеристики'; затем это объединяет результат с ключом пользователя; и наконец, это смешивает результат, чтобы получить 'реальный' ключ, который впоследствии используется, для кодирования или декодирования блока данных. Вот подробное описание двух циклов UUE : Чтобы кодировать: process( master-key, user-password ) -> K1t, K1s, K2t, K2s, Ksep, Kuni separate( T ) -> T1, T2 Ksep S ( K1t, T1 xor T2 ) xor T2 -> C2 K1s S ( K2t, C2 ) xor ( T1 xor T2 ) -> C1 K2s unite ( C1, C2 ) -> C Kuni Чтобы декодировать : process( master-key, user-password ) -> K1t, K1s, K2t, K2s, Ksep, Kuni separate( C ) -> C1, C2 Kuni S ( K2t, C2 ) xor C1 -> ( T1 xor T2 ) K2s S ( K1t, T1 xor T2 ) xor C2 -> T2 K1s ( T1 xor T2 ) xor T2 -> T1 unite ( T1, T2 ) -> T Ksep анализ алгоритма сжатия по методу Хаффмана Описание работы программы.

оценка дачи рыночная в Калуге
экспертиза зданий в Туле
консалтинг оценка в Липецке

Подобные работы

Шифрование по методу UUE

echo "Объектом исследования в данной курсовой взят метод шифрования данных по алгоритму UUE . Данный метод используется в большинстве распространенных в настоящее время операционных систем на основе я

Отечественные статистические пакеты

echo "Ростов-на-Дону 2004г. С О Д Е Р Ж А Н И Е 1. Введение 2. Общие сведения об СПП. 3. Легкость использования пакета и его освоения 4. Виды статистических пакетов 5. Требования к статистическим паке

Композиции шифров

echo "Рассеивание заключается в распространении влияния одного символа открытого текста на много символов шифртекста: это позволяет скрыть статистические свойства открытого текста. Развитием этого пр

Информация как предмет защиты

echo "Свойства информации………………………………………..10 2.1. Понятие информации …..……………………………………….……10 2.2. Свойства информации………………………………………………...11 2.3. Свойства конфиденциальной информации………………………....13 2.

Зарубежные статистические пакеты: возможности, недостатки, перспективы развития

echo "Ростов-на-Дону 2004г. ПЛАН 1. Введение стр.3 2. Виды статистических пакетов стр.4 3. Анализа однотипных зарубежных пакетов стр.5 4. Возможности западных статистических пакетов стр.6 Возможности

 
© 2011-2012, e